If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2+42x+24=0
a = 9; b = 42; c = +24;
Δ = b2-4ac
Δ = 422-4·9·24
Δ = 900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{900}=30$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(42)-30}{2*9}=\frac{-72}{18} =-4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(42)+30}{2*9}=\frac{-12}{18} =-2/3 $
| -42+3n=6n | | 3/4x-15=33 | | 5/4=y−14 | | 13=w-2/14 | | 2(7-x)=6+5(1+4x) | | 7x-10=6x-3x | | -2(3x+7)=3(2x+8);x=-5 | | 8x+5=512 | | 6=-2x+18 | | |15-5x|=55 | | -40+2n=3n+2(3n+1) | | w/6+5/8=−11/8 | | 2.4w=2.6 | | 12.6=4m=9.6+8m | | 3(4x-1.9)=6x-5.7 | | 2x+4(4x+6)=186 | | 2/5x+12=2 | | 6x+12x-8=10 | | 6x-59=-x+53 | | 5y-5=1 | | -4(x+1)=-6x-6 | | 4y=38-1.2(4y+16) | | 1=5y-5 | | 3x-4=-21 | | -10x-15=21-7x | | 16=44x-2 | | H(t)=-4.9t^2+58.8t | | 5x^2-7x=-6x+45 | | m/6=-1/3 | | 5x^2-7x=-6x+45x2−7x=−6x+4 | | -4x-105=30+x | | 3/5x-15=6/5+12 |